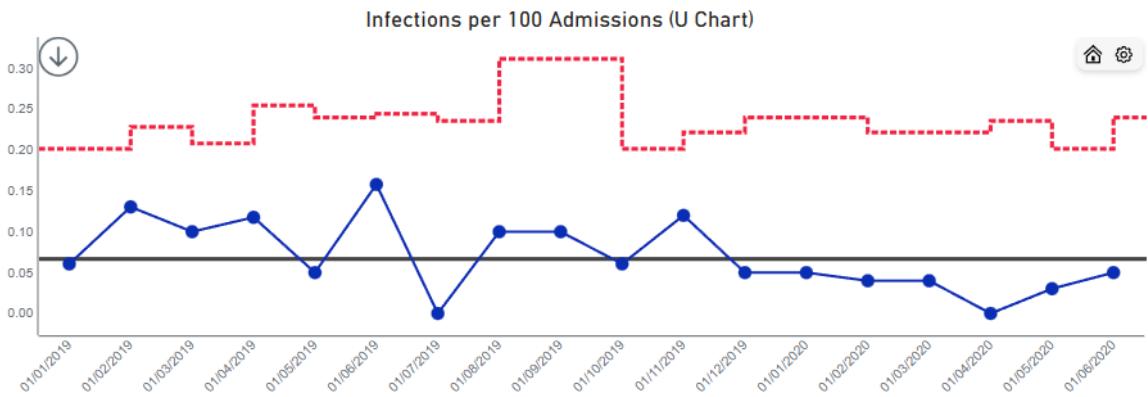


# SPC Analysis with T Charts

January 2025

# SPC Analysis | T-Charts

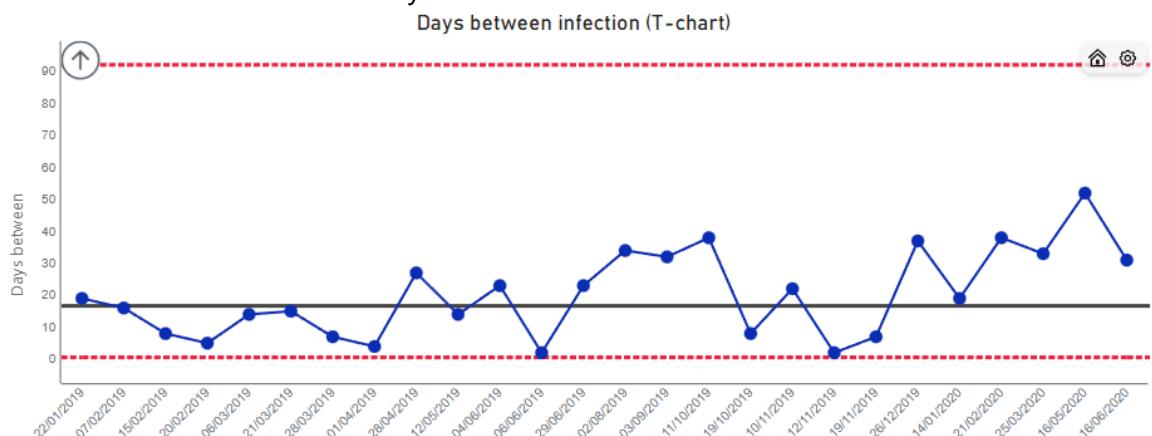
## Contents


### SPC Analysis – T Charts 3

|                             |   |
|-----------------------------|---|
| Alternative option          | 4 |
| Data used to create charts: | 5 |
| References:                 | 6 |

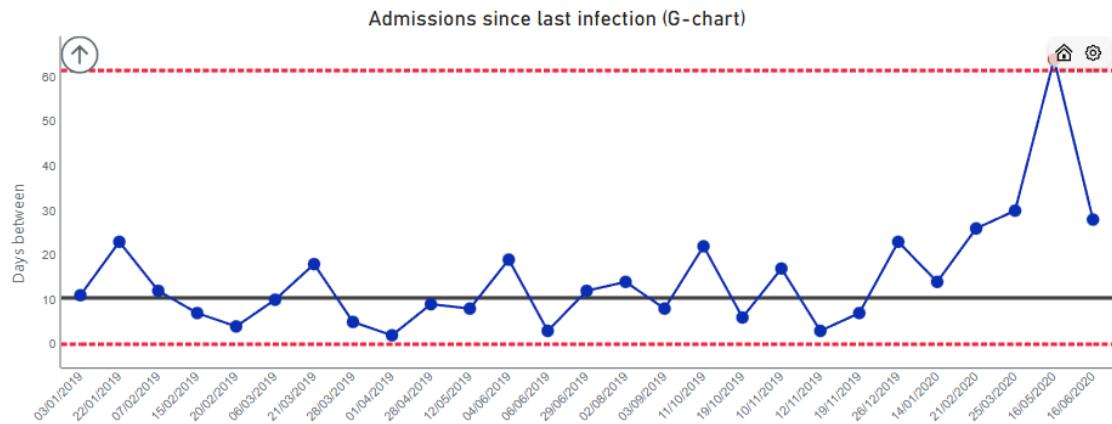
## SPC Analysis – T Charts

Whilst attribute charts are useful in monitoring performance and demonstrating improvement, they become less useful when events are infrequent. Whether C, U or P chart, these charts should have a  $LCL > 0$  for effective interpretation of special cause signals, specifically points below the lower control limit and 8 or more data points below the centreline (Provost and Murray, 2022).


The U chart below shows a low infection rate, resulting in no LCL, making interpretation of any potential special cause difficult (Robert Lloyd, 2019).



An alternative approach to displaying the data is to use rare event SPC charts, either a T-chart (for time between events) or a G chart (for the number of opportunities such as admissions, cases, and procedures between events.). Whilst the rules for interpreting special cause is the same, the plotting of the x-axis is different (Robert Lloyd, 2019)(Provost and Murray, 2022). The interpretation of the chart applies to the plotted points, **not** gaps in time.


Rather than plotting data points by month, data points are only plotted when an event occurs. The x-axis is, therefore, a discontinuous time sequence. If you never have an event there would be no data plotted on the chart. This makes the plotting of both the G and T chart different from other SPC charts.

Below is a T-chart for the same unit and time period as for the U chart above but plotting the date of infection and the number of days between infection.



It is not possible for a T chart, or G chart to show monthly cumulation of days without an event due to the nature of the charts themselves.

Below is a G-chart for the same unit, plotting the date of event and the number of admissions since last event, showing evidence of special cause – an increased number of admissions between infections.



## Alternative option

T- and G-charts assume each event is independent and that the opportunity/time between events resets the experiment (Provost and Murray, 2022).

Whilst not standard practice, if wanting to plot monthly cumulative data, an alternative approach would be to calculate the days since last event at each month end. This would be plotted on a simple line chart rather than SPC. SPC charts would not be appropriate for this chart type. Furthermore, it loses information as it only calculates the cumulative time since last event at month end. If there are multiple events in one month, such information would be missed off such a chart and may lead to misinterpretation.

Cumulative days since last infection (monthly)



## Data used to create charts<sup>1</sup>:

### 1. U-Chart

| Month  | Number of infections | Number of admissions |
|--------|----------------------|----------------------|
| Jan-19 | 2                    | 33                   |
| Feb-19 | 3                    | 23                   |
| Mar-19 | 3                    | 30                   |
| Apr-19 | 2                    | 17                   |
| May-19 | 1                    | 20                   |
| Jun-19 | 3                    | 19                   |
| Jul-19 | 0                    | 21                   |
| Aug-19 | 1                    | 10                   |
| Sep-19 | 1                    | 10                   |
| Oct-19 | 2                    | 33                   |
| Nov-19 | 3                    | 25                   |
| Dec-19 | 1                    | 20                   |
| Jan-20 | 1                    | 20                   |
| Feb-20 | 1                    | 25                   |
| Mar-20 | 1                    | 25                   |
| Apr-20 | 0                    | 21                   |
| May-20 | 1                    | 33                   |
| Jun-20 | 1                    | 20                   |

### 2. T and G chart

| Date of infection | Admissions since last infection |
|-------------------|---------------------------------|
| 03/01/2019        | 11                              |
| 22/01/2019        | 23                              |
| 07/02/2019        | 12                              |
| 15/02/2019        | 7                               |
| 20/02/2019        | 4                               |
| 06/03/2019        | 10                              |
| 21/03/2019        | 18                              |
| 28/03/2019        | 5                               |
| 01/04/2019        | 2                               |
| 28/04/2019        | 9                               |
| 12/05/2019        | 8                               |
| 04/06/2019        | 19                              |
| 06/06/2019        | 3                               |
| 29/06/2019        | 12                              |

<sup>1</sup> Data taken from (Provost and Murray, 2022)

|            |    |
|------------|----|
| 02/08/2019 | 14 |
| 03/09/2019 | 8  |
| 11/10/2019 | 22 |
| 19/10/2019 | 6  |
| 10/11/2019 | 17 |
| 12/11/2019 | 3  |
| 19/11/2019 | 7  |
| 26/12/2019 | 23 |
| 14/01/2020 | 14 |
| 21/02/2020 | 26 |
| 25/03/2020 | 30 |
| 16/05/2020 | 64 |
| 16/06/2020 | 28 |

### 3. Line chart

| End of month | Most recent infection | Days since last infection |
|--------------|-----------------------|---------------------------|
| 31/01/2019   | 22/01/2019            | 9                         |
| 28/02/2019   | 20/02/2019            | 8                         |
| 31/03/2019   | 28/03/2019            | 3                         |
| 30/04/2019   | 28/04/2019            | 2                         |
| 31/05/2019   | 12/05/2019            | 19                        |
| 30/06/2019   | 29/06/2019            | 1                         |
| 31/07/2019   | 29/06/2019            | 32                        |
| 31/08/2019   | 02/08/2019            | 29                        |
| 30/09/2019   | 03/09/2019            | 27                        |
| 31/10/2019   | 19/10/2019            | 12                        |
| 30/11/2019   | 19/11/2019            | 11                        |
| 31/12/2019   | 26/12/2019            | 5                         |
| 31/01/2020   | 14/01/2020            | 17                        |
| 29/02/2020   | 21/02/2020            | 8                         |
| 31/03/2020   | 25/03/2020            | 6                         |
| 30/04/2020   | 25/03/2020            | 36                        |
| 31/05/2020   | 16/05/2020            | 15                        |
| 30/06/2020   | 16/06/2020            | 14                        |

### References:

Provost, L.P. and Murray, S.K. (2022) *The Health Care Data Guide Learning from Data for Improvement*. 2nd ed. Newark: John Wiley & Sons, Incorporated.

Robert Lloyd (2019) *Quality Health Care: A Guide to developing and using indicators*. Second. Jones & Bartlett Learning.

A large, abstract graphic element occupies the right side of the page. It consists of several overlapping, rounded, translucent shapes in a teal color gradient. The shapes are roughly triangular and form a cluster that tapers towards the bottom right. The background behind the shapes is a dark teal color that gradually lightens towards the bottom right corner, creating a warm, orange-yellow glow.

www.bcn.co.uk  
Registered in England and Wales. Company registration number 06893253. VAT registration number 311926913.